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Shear-induced microstructure distortion and its relaxation for colloids very close
to the critical point

Jan K. G. Dhont and Igor Bodna´r
Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Research Institute, Utrecht University,

Padualaan 8, 3584 CH Utrecht, The Netherlands
~Received 10 April 1998!

Light scattering experiments on a stationary sheared colloidal system very close to the gas-liquid critical
point, beyond the mean-field region, show that there is a pronounced shear-induced distortion of the structure
factor in directions perpendicular to the flow direction for very small shear rates. This is contrary to what is
found in the mean-field region, further away from the critical point, where the structure in these directions is
unaffected. Light scattering experiments are presented for a colloid-polymer mixture and possible origins for
this unexpected effect are discussed. After cessation of the shear flow we find an unusual relaxation phenom-
enon where the scattered intensity develops a ringlike structure, implying that there is an optimum relaxation
rate at some intermediate wave vector. A theoretical explanation for this phenomenon is given, which shows
that the scattering ring is the result of the interplay between a driving force and a rate limiting diffusion
process. The phenomena that are observed experimentally are extensively compared to theoretical predictions.
The necessary theoretical background is discussed in some detail.@S1063-651X~98!13810-2#

PACS number~s!: 82.70.Dd, 82.20.Mj, 83.50.Ax, 64.60.Ht
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I. INTRODUCTION

On approach of the gas-liquid critical point, the extent
spatial correlations between the~colloidal! particles increases
without bound. The spatial extent of these correlations
measured by the correlation length, which thus diverge
the critical point. The effect of shear flow on these critic
long-range correlations is significant already for small sh
rates, resulting in a highly anisotropic microstructure a
thus giving rise to highly anisotropic scattering patterns.

Such a strong anisotropy of the scattered intensity of li
is found by, e.g., Beysens and co-workers@1,2# in critical
binary mixtures of fluids. They observe a strong anisotro
with respect to the flow direction. The experimental findin
are interpreted in terms of the dimensionless parameterġtc ,
with ġ the shear rate andtc the relaxation time for critical
fluctuations. This dimensionless number is the shear rat
units of the reciprocal relevant time scaletc . An essential
ingredient in their data interpretation is the shear-indu
shift of the critical temperature.

The effect of shear flow on critical fluctuations in low
and high-molecular-weight polymer blends has been stud
by Nakataniet al. @3# and Hobbieet al. @4–6# by means of
small-angle neutron scattering and dynamic light scatter
For the low molecular blends no anisotropy is found in t
experimentally probed scattering angle range~there might be
anisotropic scattering for smaller scattering angles, outs
the experimental range!. The isotropic scattering patters fo
the blends under stationary shear flow are fitted to Ornst
Zernike equilibrium forms with a shear-rate-dependent c
relation length. The shear rate dependence of the correla
length is attributed to the shear-flow-induced shift of t
critical point, as predicted by Onuki, Yamazaki, and K
wasaki @7#. For the high-molecular-weight polymer blend
however, a strong anisotropy is observed, except in di
tions perpendicular to the flow direction, where the struct
PRE 581063-651X/98/58~4!/4783~10!/$15.00
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factor retains its equilibrium form. The wave vectorkc where
the structure factor begins to deviate from its equilibriu
form is found to be proportional toġ1/3, in accordance with
predictions of Onuki, Yamazaki, and Kawasaki@7#. The rel-
evance of the wave vectorkc is that 2p/kc is the longest
distances over which correlations are still unaffected by
applied shear flow.

In Sec. II we shall consider the role of the shear-induc
shift of the critical point in the case of colloidal systems,
well as the shear-rate dependence ofkc and the relevance o
the dimensionless parameterġtc .

Only few experimental results are available on the rel
ation of critical correlations after cessation of shear flo
Beysens, Gbadamassi, and Moncef-Bouanz@2# describe a re-
laxation experiment on a binary fluid mixture at one sing
scattering angle and observed single exponential relaxa
with time. Relaxation experiments in polymer systems
reported by Wu, Pine, and Dixon@8#, Dixon, Pine, and Wu
@9#, and van Egmond, Werner, and Fuller@10#. They find
shear-flow-enhanced structures, leading to anincreaseof the
turbidity. These effects are the result of strong entanglem
and are fundamentally different from the phenomena d
cussed in the present paper. In binary liquids and in syst
of rigid, spherical colloids the turbidity is found to sharp
decreaseon applying shear flow@2,11#. This sharp decreas
of the turbidity is the result of strong reduction of micro
structural order, contrary to the polymer systems in Re
8–10, where entanglement leads to enhanced microstruc
order on applying shear flow.

In the present paper we report on shear-induced mic
structural anisotropy and the relaxation of these anisotro
structures after cessation of the shear flow in a system
spherical colloids exhibiting a gas-liquid critical point. Th
relaxation phenomena are also discussed, in less deta
Ref. @12#. As far as the structures under stationary shear fl
are concerned, we shall focus on the difference in respo
4783 © 1998 The American Physical Society
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4784 PRE 58JAN K. G. DHONT AND IGOR BODNÁR
between systems in the mean-field region, away from
critical point, and systems very close to the critical point.
Sec. II the necessary theoretical background is given. T
section contains all the ingredients necessary to unders
and interpret the experimental findings. Section III gives
experimental details and results and Sec. IV is a summ
and conclusion.

The flow field considered in the present paper is in thx
direction, its gradient is in they direction, and thez direction
corresponds to the vorticity direction. The first componentk1
of the scattering vectork is thus its component along th
flow direction,k2 is its component along the gradient dire
tion, andk3 is along the vorticity direction. The experiment
results presented in this paper relate to the flow-vortic
plane, wherek2 is practically zero.

II. THEORETICAL BACKGROUND

Notable theoretical approaches to describing station
shear flow effects on microstructure are due to Onu
Yamazaki, and Kawasaki@7,13#, Schwarzl and Hess@14#,
Ronis @15#, and Wagner and Russel@16#. The theoretical
approach discussed in the following subsections is ta
from Refs. @17,18#, which specifically deal with colloida
systems near the critical point.

A. Shear-induced distortions under stationary shear flow

The dimensionless number that measures the amoun
distortion of microstructure extending over distancesr is the
Péclet numberġr 2/2D, whereġ is the shear rate andD is the
diffusion coefficient relevant for relaxation of microstru
tures of extentr. When the Pe´clet number is less than 1, th
effects of shear on microstructures of extentr are small,
while for Péclet numbers larger than 1 there is a significa
distortion. As it will turn out, there are two length scales
interest in the vicinity of the critical point: the rangeRV of
the pair-interaction potential, which is of the order of the s
of the core of the colloidal particles, and the extent of cr
cal, long-range correlations, which is measured by the co
lation lengthj. In addition there are two time scales to b
distinguished: the relaxation time of microstructure of ext
RV , which is characterized by the single-particle diffusi
coefficientD0 , and the relaxation time of the microstructu
of extentj, which is characterized by an effective diffusio
coefficientDeff(k50). Two Péclet numbers should therefor
be distinguished: the bare Pe´clet number Pe0, which mea-
sures the amount of distortion of the microstructure o
distances at most equal to the rangeRV of the pair-
interaction potential, and the dressed Pe´clet numberl, which
relates to the amount of distortion over distances compar
to the correlation lengthj of the unsheared system. The
two Péclet numbers are equal to

Pe05
ġRV

2

2D0
, ~1!

l5
ġj2

2Deff~k50!
. ~2!
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@In Refs. @17,18# the parameter l is defined as
(RV

2/bS)Pe0(j/RV)4. Some rearrangement with the help
Eqs.~3! and ~4! below shows that this is precisely the sam
as the dressed Pe´clet number in Eq.~2!. We should also
mention that in Refs.@16,17# a third, dressed Pe´clet number
Pe is introduced. The physically relevant dressed Pe´clet
number, however, is the parameterl.# The diffusion coeffi-
cient Deff(k50) is an effective diffusion coefficient tha
governs the diffusive behavior of colloidal particles over d
tances of the orderj in systems in the vicinity of the critica
point. The wave-vector-dependent effective diffusion coe
cient is equal to

Deff~k!5D0bF dP

dr̄
1Sk2G , ~3!

whereP is the osmotic pressure,r̄5N/V is the number den-
sity of colloidal particles, andS is a constant related to th
square-gradient Cahn-Hilliard coefficient~which measures
the contribution of gradients in the density to the local Hel
holtz free energy!. The correlation length of the unsheare
system is related todP/dr̄ andS as

j5A S

dP/dr̄
. ~4!

Notice that sincebdP/dr̄→0 on approach of the critica
point, Deff(k50)!D0 , that is, diffusive motion near the
critical point becomes very slow. This is a phenomenon t
is usually referred to as ‘‘critical slowing down.’’ Further
more,j@RV , so thatl@Pe0, that is, long-range critical cor
relations can be significantly distorted for shear rates wh
short-range correlations are hardly affected. Whenl,1,
long-range correlations are only slightly affected. Lon
range correlations are severely affected only whenl.1.
Similarly, short-range correlations are only affected wh
Pe0.1. One can therefore generally distinguish betwe
three shear-rate regimes

l,1, Pe0!1 ~the weak-shear regime!,

l.1, Pe0!1 ~the strong-shear regime!,

l.1, Pe0!” 1 ~the very-strong-shear regime!, ~5!

The theoretical predictions in Refs.@17,18# are valid only in
the weak- and strong-shear regimes since there the disto
of short-range correlations, measured by the bare Pe´clet
number Pe0, are neglected. For those shear-rate regimes
static structure factorSstat under stationary shear flow i
found to be given by

Sstat~K !5Seq~K !1
@Seq~K !21#

lK1

3E
K2

6`

dX~K22K2
21X2!~K2

22X2!expH 2
F~K uX!

lK1
J ,

~6!



o-

sy

nl

or
,
c
n
a

n
a-
ar

nt

d
r
ed
sid

ve
n

be

r
an
th
c
m
e
ow

ca

of
e-
ust
e

-
-
he

q.

t

nifi-
as

f

r

t

y
ibed
eld
po-

ar-
of
nd
nd

d
d

PRE 58 4785SHEAR-INDUCED MICROSTRUCTURE DISTORTION AND . . .
whereK5kj is a dimensionless wave vector with comp
nentsK j . The upper bound of the integral is1` ~2`! when
K1.0 (K1,0). The functionF(K uX) is a polynomial of
the components of the dimensionless wave vector andX,

F~K uX!5~X2K2!~K22K2
2!~11K22K2

2!

1 1
3 ~X32K2

3!~112K222K2
2!1 1

5 ~X52K2
5!.

~7!

The equilibrium structure factorSeq is the Ornstein-Zernike
structure factor

Seq~K !5
1

bS

1

j221k2 5
j2

bS

1

11K2 . ~8!

This is the structure factor of the unsheared, quiescent
tem with correlation lengthj. Besides being valid only in the
weak- and strong-shear regimes, the result~6! and~7! for the
structure factor under stationary shear flow is also valid o
in the mean-field region. In its derivation in Refs.@17,18# the
equation of motion for the total correlation functionh ~the
Fourier transform of which is essentially the structure fact!
is linearized with respect toh. This is allowed for the small
critical wave vectors of interest near the critical point, sin
h(r !→0 for r→`. The asymptotic solution of the equatio
of motion for large distances can thus be obtained by line
ization with respect toh. What goes wrong on linearizatio
very close to the critical point is the following. On lineariz
tion, terms of orderh2 are neglected with respect to line
terms in h. An important linear term is multiplied by
bdP/dr̄. The actual assumption is thus that (bdP/dr̄)h
!h2 for typical values thath attains due to the developme
of long-range correlations, that is, forr @RV . Very close to
the critical point, however,bdP/dr̄ becomes very small an
the quadratic terms inh ~and possibly even higher-orde
terms! are just as important as the linear term mention
Therefore, nonlinear equations of motion should be con
ered beyond the mean-field region. The result in Eqs.~6! and
~7! obtained after linearization becomes less accurate on
close approach of the critical point. A third approximatio
that has been made to arrive at the result in Eqs.~6! and~7!
for the structure factor is that hydrodynamic interactions
tween the colloidal particles are neglected.

The expressions~6! and~7! for the structure factor unde
stationary shear flow are easily evaluated numerically
some results are shown in Fig. 1. As can be seen from
figure, long-range correlations are diminished in all dire
tions by the shear flow, except in directions where the co
ponent of the wave vector along the flow direction vanish
K150. That the structure factor is unaffected by shear fl
in these directions can immediately be seen from Eq.~6!
since there the shear rateġ;l is always multiplied byK1
and of courseSstat5Seq whenl50. Hence

Sstat~K !5Seq~K ! for K150. ~9!

Identifying the integrand in Eq.~6! as ad distribution for
vanishing shear rates makes this statement mathemati
rigorous~see Refs.@17,18# !.
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To summarize, the result in Eqs.~6! and~7! for the struc-
ture factor under stationary shear flow is only valid~i! when
Pe0!1, that is, not in the very-strong-shear rate regime;~ii !
in the mean-field region where linearization of equations
motion for the total-correlation function is allowed, not b
yond mean field, where nonlinear equations of motion m
be considered; and~iii ! when hydrodynamic interactions ar
negligible.

The dressed Pe´clet numberl is the same as the dimen
sionless constantġtc mentioned in the Introduction in con
nection with earlier work. This can be seen as follows. T
typical relaxation timetc of density waves with wavelength
2j is equal to tc5j2/Deff(k52p/2j)5j2/2CDeff(k50),
with C5 1

2 (11p2) a numerical constant. Here we used E
~4! for the correlation length. Henceġtc5ġj2/2Deff(k
50), which is preciselyl, apart from the numerical constan
C. The shear-rate dependence of the wave vectorkc , for
which shear effects on the structure factor becomes sig
cant, as mentioned in the Introduction, can be obtained
follows. The Pe´clet number Pec that measures distortions o
correlations extending over distances 2p/kc is equal to
(2p/kc)

2ġ/2Deff(kc). Very close to the critical point, where
bdP/d r̄'0, we have, according to Eq.~3!, Deff(kc);kc

2

and hence Pec;ġkc
24. The distortion of the structure facto

for wave vectors equal tokc becomes significant when Pec

'1 and hencekc;ġ1/4. Further away from the critical poin
we have Deff(kc)'D0bdP/dr̄5const, so that it follows
similarly thatkc;ġ1/2. The exponent 1/4 found in this wa
should not be taken too seriously since the theory descr
above applies only to the mean-field region. The mean-fi
exponent of 1/2 found here is the rigorous mean-field ex
nent that expresses the shear-rate dependence ofkc ~except
that hydrodynamic interactions between the colloidal p
ticles are neglected!. The exponent beyond the mean field
1/3 found for molecular systems by Onuki, Yamazaki, a
Kawasaki@7# is in between our mean-field exponent 1/2 a
our estimate of the exponent beyond mean field 1/4.

FIG. 1. Stationary structure factorSstat(K ) according to Eqs.~6!
and ~7! in the flow-gradient plane~upper figures! and the flow-
vorticity plane ~lower figures!, for various values of the dresse
Péclet numberl. The leftmost figure is the equilibrium, unsheare
structure factor in Eq.~8!, the Ornstein-Zernike structure factor.
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B. Relaxation after cessation of shear flow

After cessation of shear flow, the structure factor w
change in time from its form under stationary shear flow
the Ornstein-Zernike equilibrium form. Under the same co
ditions for the validity of Eqs.~6! and ~7! for the stationary
sheared structure factor, the transient structure fac
S(K ,t) obey the equation of motion@18#

]S~k,t !

]t
522Deff~k!k2@S~k,t !2Seq~k!#, ~10!

where the effective diffusion coefficient is given in Eq.~3!.
There is thus a ‘‘driving force’’ equal to the differenceS
2Seq between the actual structure factor and its final eq
librium form and there is a rate limiting diffusion coefficien
The solution of Eq.~10! is easily found to be equal to

S~K ,t !5Seq~k!1@Sstat~k!2Seq~k!#

3exp$22Deff~k!k2t%

5Seq~K !1@Sstat~K !2Seq~K !#

3exp$2K2~11K2!ġt/l%, ~11!

where K is, as before, the dimensionless wave vectorK
5kj, with j the correlation length of the unsheared, equil
rium system. Here we used that 2Deff(k)k2t5K2(1
1K2)ġt/l. This result predicts that at any time during r
laxation, the structure factor takes its equilibrium form
directions perpendicular to the flow direction, that is, f
K150, just like the structure factor under stationary sh
flow,

S~K ,t !5Seq~K ! for K150. ~12!

Numerical results for transient structure factors during rel
ation in the flow-vorticity plane are given in Fig. 2. As ca
be seen from this figure, a scattering ring develops that
closes the Ornstein-Zernike equilibrium structure factor
K150, and the ring moves inward as time proceeds. A
relaxation the structure factor attains its isotropic equilibriu
Ornstein-Zernike formSeq(K) for all wave vectors.

Notice that the result~11! for the transient structure facto
predicts single exponential relaxation in time, which w
also observed by Beysens, Gbadamassi, and Moncef-Bo
@2# for binary fluids. Furthermore, relaxation times are on
shear dependent through the shear rate dependence o
stationary sheared structure factorSstat in the exponential

FIG. 2. Transient structure factorsS(K ,t) in the flow-vorticity
plane after cessation of shear flow, according to Eq.~11!.
l
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prefactor. The argument of the exponent in Eq.~11! is inde-
pendent of the shear rate sincel;ġ.

What is the origin of the scattering ring? As explain
above, there is a driving forceS2Seq for relaxation that in-
creases with decreasing wave vector~except in directions
whereK150). This driving force gives rise to slower relax
ation at larger wave vectors. The rate of relaxation is dif
sion limited, as signified by the factorDeff(k)k2 in Eq. ~10!.
This diffusion rate gives rise to faster relaxation at larg
wave vectors. The interplay between these two relaxa
rate determining factors gives rise to an optimum relaxat
rate at some intermediate wave vector, as a result of wh
the scattering ring appears.

A similar scattering ring is seen during spinodal deco
position, but its origin is completely different. In the case
spinodal decomposition one has a negative value ofdP/dr̄,
giving rise to an optimum value of the diffusion ra
Deff(k)k2 itself, as can be seen from Eq.~3! for the effective
diffusion coefficient. In the present case the diffusion rate
a monotonically increasing function of the wave vector sin
dP/dr̄.0. It is the combination of the wave-vector depe
dence of the driving force and the diffusion rate that giv
rise to an optimum relaxation rate. Notice also that in t
case of spinodal decomposition the equilibrium state i
demixed state of two coexisting phases, while in the pres
case the equilibrium state is a homogeneous, one-phase

C. Shear-induced shift of the critical point

So far we have not addressed the shear-induced disp
ment of the critical point, a shift which may be of importan
for data interpretation. It can be rigorously shown that t
shear-induced shift of the critical point is related to the d
tortion of short-range correlations@19#. The displacement of
the critical point is thus a function of the bare Pe´clet number
Pe0, not of the dressed Pe´clet numberl. In the weak- and
strong-shear regime, as defined in Eq.~5!, the displacement
of the critical point is therefore negligible. There is a signi
cant displacement only in the very-strong-shear regim
where Pe0 is not very small. However, on very close a
proach of the critical point, a very small displacement m
already be of importance. When the small distance to
critical point is of the same order as its small displaceme
that displacement does have a significant effect. The theo
ical results discussed in Secs. II A and II B are valid only
the mean-field region, relatively far away from the critic
point, and only in the weak- and strong-shear regime. For
experimental verification of these theoretical results,
shear-induced shift of the critical point is therefore irre
evant. The shift may be relevant to some of the experime
that we will present here, which are performed extrem
close to the critical point. To quantitatively interpret su
experiments beyond the mean-field region, one should
only consider nonlinear equations of motion for the to
correlation function, but also include distortions of sho
range correlations, even for small values of the bare Pe´clet
number.

Notice that in the mean-field region there is a significa
distortion of the structure factor in directions perpendicu
to the flow direction only when there is also a significa
shift of the critical point. Both the shift of the critical poin
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and distortions along directions wherek150 are significant
in the mean-field region only when the bare Pe´clet number is
not very small, that is, only in the very-strong-shear regim

III. EXPERIMENT

A. Colloidal system

A relatively easy way to prepare a model colloidal syst
exhibiting a gas-liquid critical point is by mixing colloida
particles and polymer. In case the solvent is chosen such
the colloidal particles behave as hard spheres~in the absence
of polymer! and is au solvent for the polymer, while the
polymer does not adsorb onto the colloidal particles,
proximate theories predict a gas-liquid phase transition w
the size ratio of the colloidal particles to that of the polym
is less than about 0.3@20#. The mechanism that leads to th
effective attraction between the monodisperse colloidal p
ticles that is necessary for a gas-liquid phase transitio
easily understood: When two colloidal particles approa
each other, there exists a region between these particles
is depleted from polymers, giving rise to an uncompensa
osmotic pressure that drives the colloidal particles toget
These attractive pair interactions between the colloidal p
ticles are therefore commonly referred to as ‘‘depletio
induced attractions’’@21,22#.

The colloidal particles we used as spherical, amorph
silica particles, synthesized according to Sto¨ber, Fink, and
Bohn @23# and coated with stearyl alcohol according to v
Helden, Jansen, and Vrij@24#. The radius of the coated silic
particles in cyclohexane, as determined with dynamic li
scattering, is 57 nm. In cyclohexane these particles beh
like hard spheres. The polymer that is added is polydime
ylsiloxane with a molecular weight of 204k and a radius of
gyration in cyclohexane of 23 nm. The critical compositi
of this system is 101 g of silica particles and 1 g ofpolymer.
The distance to the critical point is changed by adding
evaporating solvent. The critical polymer concentration
approximately 4 g/l, with a colloid volume fraction of abo
25%.

B. Experimental setup

A schematic of the experimental setup is given in Fig.
The light source is a 5-mW He-Ne laser~Hughes, model
3225H-PC, wavelength 632.8 nm!. A lense and a pinhole ar
used to control the primary beam. The shear cell is an opt
Couette geometry, with an inner optical glass cylinder w
diameter of 43.05 mm and a gap width of 1.90 mm. T

FIG. 3. Schematic of the experimental setup. See the main
for further details.
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entire Couette cell is placed in a toluene bath that serves
for thermostating at~25.060.1! °C and for optical matching.
Within the hollow rotation inner cylinder, filled with toluene
a stationary pinhole is placed to prevent detection of sc
tered light from the first gap. The second gap is arranged
be in the center of the cylindrical toluene bath. The scatte
intensity is projected onto a translucent screen, from wh
the intensity is recorded by a computer-interfaced cha
coupled device camera~EDC-1000, Electrim Corporation
1923165 pixels, with eight-bit resolution!. The beam is al-
lowed to pass through a circular hole in the screen to prev
detection of radiation from the incident beam as well as lig
that is scattered by dust particles, which are inevita
present to some extent. The setup allows measuremen
the scattering angle range of 1.2°–10°, corresponding t
wave-vector range of (33105) – (33106) m21. In this
wave-vector range the form factor of the colloidal particles
essentially equal to 1, so that the measured scattered in
sity is directly proportional to the structure factor. Furthe
more, we found the scattering of the polymers complet
negligible compared to that of the colloidal silica particles

C. Scattering under stationary shear flow

In this subsection we consider two concentrations: a c
centration where the correlation length is equal to 850650
nm, referred to as systemA, and a concentration where th
correlation length is equal to 2.860.5 mm, referred to as
systemB. Since the range of the pair-interaction potential
about 160 nm, being the sum of the diameter of a sil
particle and that of a polymer, systemA is not extremely
close to the critical point~probably in the mean-field region!,
contrary to systemB. These correlation lengths are measur
by light scattering from the unsheared systems, using
Ornstein-Zernike~OZ! structure factor in Eq.~8!: A plot of
the reciprocal intensity against the square of the wave ve
~referred to as OZ plots! yields the square of the reciproca
correlation length as the ratio of its intercept and slope. F
ures 4~a! and 4~b! show the scattered intensities of the u
sheared systemsA and B, respectively. The OZ plots are
shown in the insets, while the main figures show the str
ture factor as a function of the wave vector, with the so
line corresponding to the linear fit of the OZ plot. The da
points are obtained as radially averaged intensities, after
rection for refraction of scattered light by the glass cylind
cal wall of the thermostating bath. As can be seen from F
4, the structure factor of both systemsA and B is well de-
scribed by the Ornstein-Zernike form~8!.

Figures 5~a! and 5~b! show the structure factor as a fun
tion of k3 at k150 for systemsA and B, respectively, for
several shear rates. As can be seen, there is almost no
servable decrease of the structure factor for the mean-
systemA up to the highest shear rate (ġ59.5 s21), while for
the system beyond the mean field, systemB, even for the
lowest shear rate~ġ50.1 s21! there is already a significan
distortion. The mean-field result~6! and ~7! predicts that
there should be no distortion in the directions wherek150,
whenever the bare Pe´clet number Pe0!1. For systemA, the
highest shear rate corresponds to a bare Pe´clet number of
0.03 and the experimental observations in Fig. 5~a! sustain
this mean-field prediction. For systemB, however, the small-

xt
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FIG. 4. Radially averaged intensities plotted versus the wave vector for~a! systemA and~b! systemB. The insets are OZ plots for the
determination of the correlation length. The solid lines in the main figures are the best fits to the OZ plots.
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est shear rate corresponds to a bare Pe´clet number as small a
0.0003, but still a significant distortion is found, even thou
k150. There is thus a significantly different behavior ve
close to the critical point as compared to the mean-field
havior of the distorted structure factor.

In Figs. 6~a! and 6~b! the structure factor is plotted as
function ofk1 at k350 for systemsA andB, respectively, for
the same shear rate range as in Figs. 5~a! and 5~b!. A strong
reduction of the structure factor of systemA is found beyond
ġ50.2 s21, showing that the experiments relate to the stro
shear regime, wherel.1 @see the definition~5!#. The distor-
tion of systemB is even more pronounced than for systemA.
The same features are found for the structure factor a
function ofk1 at a finite value 7.23105 m21 of k3 , as shown
in Figs. 7~a! and 7~b!. The data given in Figs. 6~a! and 7~a!
are too noisy to allow for a quantitative test of the predicti
~6! and ~7! for the stationary sheared structure factor.

To summarize, we found that there is a pronounced sh
induced distortion of the structure factor in directions p
-

-

a

r-
-

pendicular to the flow~wherek150) in the strong-shear re
gime @as defined in Eq.~5!# very close to the critical point.
There is no significant distortion in these directions for s
tems in the mean-field region, further away from the critic
point, in accordance with the theoretical prediction~6! and
~7! pertaining to the weak- and strong-shear regime.

D. Relaxation of the structure factor

After cessation of shear flow, the structure factor w
evolve from its form under stationary shear flow to the eq
librium Ornstein-Zernike form. We performed light scatte
ing experiments on a system very close to the critical po
beyond the mean-field region. The OZ plot for the unshea
system is given in the insert in Fig. 8~a!, while the main
figure gives the structure factor as a function of the wa
vector, where the solid line is the Ornstein-Zernike struct
factor ~8! that follows from a fit of the OZ plot~see the
discussion at the beginning of Sec. III C!. The correlation
es.
FIG. 5. Structure factor atk150 as a function ofk3 for ~a! systemA and~b! systemB for various shear rates as indicated in the figur
The solid lines are the Ornstein-Zernike structure factors as determined from the OZ plots in Figs. 4~a! and 4~b!.
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FIG. 6. Structure factor atk350 as a function ofk1 for ~a! systemA and~b! systemB for various shear rates as indicated in the figur
The solid lines are the Ornstein-Zernike structure factors as determined from the OZ plots in Figs. 4~a! and 4~b!.
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length that is found from the OZ plot is 2.660.5 mm. The
transient intensities after cessation of the shear flow wit
shear rate equal to 100 s21 are shown in Fig. 9. As can b
seen, a scattering ring develops. We found that, except f
narrow region aroundk150, the scattering patterns are ci
cular symmetric to within experimental error@such a sym-
metry is also predicted by Eqs.~6! and ~7! to within 1% in
case of largel’s#. Radial averages, where the mention
narrow region aroundk150 is omitted, are given in Fig. 8~b!
for several times after cessation of the flow. This figure
veals more clearly the formation of a peak in the struct
factor, like in the theoretical mean-field results in Fig. 2.
discussed in Sec. III C the structure factor is severely d
torted in directions wherek150 on very close approach o
the critical point. What is missing in the experimental inte
sities in Fig. 9 as compared to the theoretical results in Fi
is therefore the bright streak in the direction wherek150.
Since there is as yet no theory available for the struct
factor distortion beyond the mean-field region, the expe
a

a

-
e

-

-
2

e
i-

mental results beyond the mean field in Fig. 8~b! are com-
pared with the mean-field theoretical prediction in Eqs.~6!,
~7!, and ~11!. The dashed lines in Fig. 8~b! represent the
theoretical predictions for a dressed Pe´clet number equal to
l529 000. As can be seen, there is a semiquantitative ag
ment between the experiments and theory. The peak p
tions of the scattering maximima are well reproduced
theory. However, theory predicts a too fast growth for ea
times and a too slow growth for later times.

The effective diffusion coefficientDeff(k) can be ob-
tained, according to Eq.~11!, by a single exponential fit of
the time-dependent intensity at a fixed wave vector. This
done for three different wave vectors in Fig. 10. Single e
ponential fits are seen to overestimate the growth rate at e
times, just as the fits in Fig. 8~b!. From these single expo
nential fits we can estimate the effective diffusion coe
cient, which is plotted in Fig. 11 as a function of the squar
wave vector, which plot should be a straight line accord
to Eq.~3!. This is indeed found to be the case, except for
d
FIG. 7. Structure factor atk357.23105 m21 as a function ofk1 for ~a! systemA and ~b! systemB for various shear rates as indicate
in the figures.
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larger wave vectors where experimental uncertainties
large as the result of the small differencesS2Seq @see Fig.
8~b!#. Extrapolation to zero wave vector yieldsDeff(k50)
5(2.560.5)310214 m2 s21, which is quite a bit smaller
than the single-particle diffusion coefficientD054.3
310212 m2 s21 for the colloidal silica particles in cyclohex
ane without polymer, signifying the pronounced critic
slowing down. The dressed Pe´clet numberl, as defined in
Eq. ~2!, is thus found to be in the range 7000–25 000, wh
is of the same order as we used to describe the relaxa
data in Fig. 8~b!. Of course these results must be conside
as semiquantitative since we applied a mean-field resu
interpret relaxation data for a system very close to the crit
point. Values forDeff(k50) were obtained in the same wa
from relaxation data where the initial shear rates were

FIG. 8. ~a! Radially averaged intensities as a function of t
wave vector. The inset shows the OZ plot and the solid line in
main figure is the Ornstein-Zernike structure factor as determi
from the OZ plot.~b! Radially averaged transient intensities aft
cessation of the shear flow with shear rateġ5100 s21 as a function
of the wave vector at various times as indicated in the figure.
solid line is the Ornstein-Zernike structure factor from~a! and the
dashed lines are theoretical results from Eqs.~6! and ~7! with
l529 000.
re

l

h
on
d
to
l

.6

and 1.7 s21. We found the valuesDeff(k50)5(2.560.5)
310214 and (3.560.8)310214 m2 s21, respectively. Since
Deff(k50) is predicted to be independent of the shear ra
the three values we found should be the same. To wit
experimental errors this is indeed the case.

To summarize, we found experimentally transient stru
ture factors during relaxation after cessation of shear fl
that exhibit a peak, which means that there is an optim
relaxation rate at an intermediate wave vector. This is
accordance with mean-field theoretical predictions, wh
the scattering ring is shown to be the result of the interp
between a decreasing driving force and increasing diffus
rate with increasing wave vector. The agreement betw
mean-field theory and experiments very close to the crit

e
d

e

FIG. 9. Time series of scattering patterns during relaxation
the microstructure after cessation of a shear flow with shear
100 s21. The time between the subsequent images is about 4.5

FIG. 10. Single exponential fits to Eq.~11! of the time-
dependent intensity for three wave vectors (k50.603106 m21,
solid line;k50.753106 m21, dashed line;k51.003106 m21, dot-
ted line!.
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point is semiquantitative. Further away from the critic
point, ring formation is found experimentally to be less pr
nounced.

IV. SUMMARY AND CONCLUSIONS

Let us first summarize what the theory predicts.
~i! In the vicinity of the critical point there are two Pe´clet

numbers to be distinguished: the dressed Pe´clet numberl
and the bare Pe´clet number Pe0 @see Eqs.~1! and ~2!#. The
dressed Pe´clet number measures the amount of she
induced distortion of long-range critical microstructure, e
tending over distances of the order of the correlation len
j, while the bare Pe´clet number measures the distortion
the short-range microstructure, extending over distances
most the rangeRV of the pair-interaction potential.

~ii ! Three shear rate regimes are to be distinguished:
weak-, strong-, and very-strong-shear rate regimes@see the
definition ~5!#. In the weak-shear regime the long-range m
crostructure is only slightly affected by the shear flow~l
,1!. In the strong-shear regime the long-range microstr
ture is strongly affected, while short-range correlations
still essentially unaffected~l.1 and Pe0!1). In the very-
strong-shear regime also short-range correlations are affe
(Pe0!” 1).

~iii ! The structure factor under stationary shear flow
highly anisotropic in the strong- and very-strong-shear
gimes. There is no distortion perpendicular to the flow dir
tion in the weak- and strong-shear regime. The distortion
these directions becomes significant only in the very-stro
shear regime.

~iv! During relaxation of the microstructure after cess
tion of the shear flow, there is an optimum growth rate
some intermediate wave vector, resulting in the developm
of a peak in the scattering pattern. This peak is the resu
the interplay between a driving force and rate limiting diff
sion, the former of which decreases and the latter increa
relaxation rates on increasing the wave vector. In the we
and strong-shear regimes the structure factor is equal to

FIG. 11. Effective diffusion coefficient as a function of th
squared wave vector.
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equilibrium structure factor in directions perpendicular to t
flow direction at all times.

~v! Relaxation after cessation of shear flow is predicted
be single exponential in time.

The above results are valid in the mean-field regio
where equations of motion for the total correlation functi
can be linearized. In addition, effects of hydrodynamic int
actions between the colloidal particles are assumed not t
essential.

As far as the shear-induced displacement of the crit
point is concerned the predictions are the following.

~i! The shear-induced displacement of the critical po
~and in fact of the entire spinodal! is related to distortion of
short-range correlations and is therefore a function of
bare Pe´clet number. In the weak- and strong-shear regim
the displacement of the critical point is therefore negligib
provided experiments are performed in the mean-field
gion. Very close to the critical point, a very small displac
ment of the critical point may be of importance when t
small distance to the unsheared critical point is of the sa
order as its shear-induced displacement.

~ii ! Distortions of the microstructure in directions perpe
dicular to the flow are always accompanied by a signific
displacement of the critical point provided experiments
performed in the mean-field region. In the mean-field reg
both effects are significant only in the very-strong-shear
gime.

Experimentally the following is found.
~i! In the mean-field region the shear-induced microstr

ture in directions perpendicular to the flow direction are n
affected by shear flow in the weak- and strong-shear regim
in accordance with theory.

~ii ! Very close to the critical point, the microstructure
affected in directions perpendicular to the flow even in t
strong-shear regime, contrary to mean-field results.

~iii ! The formation of a peak in scattering patterns duri
relaxation of the microstructure after cessation of shear fl
which is predicted by mean-field theory, is indeed found e
perimentally. The ringlike transient scattering patterns
less pronounced further away from the critical point.

~iv! The agreement between mean-field predictions
experimental results very close to the critical point as far
the temporal evolution of the structure factor is concerned
semiquantitative. Contrary to mean-field theory, relaxat
very close to the critical point deviates from single expone
tial temporal behavior. Mean-field theory overestimates
laxation rates at earlier times and underestimates relaxa
times at later times.

Possible reasons for the different behavior of she
induced distortions away from and very close to the criti
point are, in order of what we feel is probable, as follows

~i! Very close to the critical point nonlinear equations
motion for the total correlation function should be analyze
contrary to the mean-field region, where linearization is
lowed. Such nonlinear equations of motion will probab
give rise to significant distortions perpendicular to the flo
in the strong-shear regime and to nonsingle exponential t
poral relaxation after cessation of shear flow.

~ii ! It might be that hydrodynamic interactions betwe
the colloidal particles are more important very close to
critical point.
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~iii ! The displacement of the critical point in the stron
shear regime may be significant very close to the criti
point in case the distance to the unsheared critical point i
the same order as the very small shear-induced displacem

The theoretical challenge is to analyze the nonlinear eq
tions of motion of the total correlation function, to includ
long-range hydrodynamic interactions, and to include sh
range distortions. These extensions of the mean-field the
as described in Refs.@17,18#, would elucidate the three
et

y

r,

s.

tt.

C.

m

l
of
nt.
a-

t-
ry,

above-mentioned points. The approach taken in Refs.@17,18#
in principle allows one to systematically incorporate the
extensions.

The things that remain to be done experimentally ar
quantitative test of the prediction~6! and~7! for the structure
factor under stationary shear in the mean-field region
further exploration of shear-induced distortions very close
the critical point. More accurate measurements than th
presented in the present paper are required for this purp
.
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@23# W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci.26,

62 ~1968!.
@24# A. K. van Helden, J. W. Jansen, and A. Vrij, J. Colloid Inte

face Sci.81, 354 ~1981!.


