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Light scattering experiments on a stationary sheared colloidal system very close to the gas-liquid critical
point, beyond the mean-field region, show that there is a pronounced shear-induced distortion of the structure
factor in directions perpendicular to the flow direction for very small shear rates. This is contrary to what is
found in the mean-field region, further away from the critical point, where the structure in these directions is
unaffected. Light scattering experiments are presented for a colloid-polymer mixture and possible origins for
this unexpected effect are discussed. After cessation of the shear flow we find an unusual relaxation phenom-
enon where the scattered intensity develops a ringlike structure, implying that there is an optimum relaxation
rate at some intermediate wave vector. A theoretical explanation for this phenomenon is given, which shows
that the scattering ring is the result of the interplay between a driving force and a rate limiting diffusion
process. The phenomena that are observed experimentally are extensively compared to theoretical predictions.
The necessary theoretical background is discussed in some {814163-651X98)13810-3

PACS numbd(s): 82.70.Dd, 82.20.Mj, 83.50.A%, 64.60.Ht

I. INTRODUCTION factor retains its equilibrium form. The wave vectQrwhere
the structure factor begins to deviate from its equilibrium

On approach of the gas-liquid critical point, the extent ofform is found to be proportional '3, in accordance with
spatial correlations between tfelloidal) particles increases predictions of Onuki, Yamazaki, and Kawas$K]. The rel-
without bound. The spatial extent of these correlations isvance of the wave vectd; is that 27/k. is the longest
measured by the correlation length, which thus diverges adistances over which correlations are still unaffected by the
the critical point. The effect of shear flow on these critical, applied shear flow.
long-range correlations is significant already for small shear In Sec. Il we shall consider the role of the shear-induced
rates, resulting in a highly anisotropic microstructure andshift of the critical point in the case of colloidal systems, as
thus giving rise to highly anisotropic scattering patterns.  well as the shear-rate dependencéofind the relevance of

Such a strong anisotropy of the scattered intensity of lighthe dimensionless parametet, .
is found by, e.g., Beysens and co-workéts2] in critical Only few experimental results are available on the relax-
binary mixtures of fluids. They observe a strong anisotropyation of critical correlations after cessation of shear flow.
with respect to the flow direction. The experimental findingsBeysens, Gbadamassi, and Moncef-Bougjzlescribe a re-
are interpreted in terms of the dimensionless parametgr  laxation experiment on a binary fluid mixture at one single
with y the shear rate and, the relaxation time for critical ~scattering angle and observed single exponential relaxation
fluctuations. This dimensionless number is the shear rate iwith time. Relaxation experiments in polymer systems are
units of the reciprocal relevant time scatg. An essential reported by Wu, Pine, and Dixdi], Dixon, Pine, and Wu
ingredient in their data interpretation is the shear-induced9], and van Egmond, Werner, and Fullgr0]. They find
shift of the critical temperature. shear-flow-enhanced structures, leading taneneaseof the

The effect of shear flow on critical fluctuations in low- turbidity. These effects are the result of strong entanglement
and high-molecular-weight polymer blends has been studiednd are fundamentally different from the phenomena dis-
by Nakataniet al. [3] and Hobbieet al. [4—6] by means of cussed in the present paper. In binary liquids and in systems
small-angle neutron scattering and dynamic light scatteringof rigid, spherical colloids the turbidity is found to sharply
For the low molecular blends no anisotropy is found in thedecreaseon applying shear flo2,11]. This sharp decrease
experimentally probed scattering angle rafigeere might be  of the turbidity is the result of strong reduction of micro-
anisotropic scattering for smaller scattering angles, outsidetructural order, contrary to the polymer systems in Refs.
the experimental rangeThe isotropic scattering patters for 8—10, where entanglement leads to enhanced microstructural
the blends under stationary shear flow are fitted to Ornsteinerder on applying shear flow.
Zernike equilibrium forms with a shear-rate-dependent cor- In the present paper we report on shear-induced micro-
relation length. The shear rate dependence of the correlatigtructural anisotropy and the relaxation of these anisotropic
length is attributed to the shear-flow-induced shift of thestructures after cessation of the shear flow in a system of
critical point, as predicted by Onuki, Yamazaki, and Ka-spherical colloids exhibiting a gas-liquid critical point. The
wasaki[7]. For the high-molecular-weight polymer blends, relaxation phenomena are also discussed, in less detall, in
however, a strong anisotropy is observed, except in direcRef.[12]. As far as the structures under stationary shear flow
tions perpendicular to the flow direction, where the structureare concerned, we shall focus on the difference in response
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between systems in the mean-field region, away from th¢in Refs. [17,1§ the parameter X is defined as
critical point, and systems very close to the critical point. In(R2/83)P&(¢/Ry)*. Some rearrangement with the help of
Sec. Il the necessary theoretical background is given. Thiggs.(3) and(4) below shows that this is precisely the same
section contains all the ingredients necessary to understang the dressed Blet number in Eq.2). We should also
and interpret the experimental findings. Section Il gives themention that in Refs[16,17 a third, dressed Rt number
experimental details and results and Sec. IV is a summarpe s introduced. The physically relevant dressedld®e
and conclusion. number, however, is the parametet The diffusion coeffi-
The flow field considered in the present paper is inxhe cient Def(k=0) is an effective diffusion coefficient that
direction, its gradient is in thg direction, and the direction  governs the diffusive behavior of colloidal particles over dis-
corresponds to the vorticity direction. The first comporiant  tances of the ordeg in systems in the vicinity of the critical

of the scattering vectok is thus its component along the point. The wave-vector-dependent effective diffusion coeffi-
flow direction,k; is its component along the gradient direc- cient is equal to

tion, andk; is along the vorticity direction. The experimental
results presented in this paper relate to the flow-vorticity

plane, wherek, is practically zero. Defi(k)=DoB

dI1

——+2k2}, 3

dp

Il. THEORETICAL BACKGROUND wherell is the osmotic pressurp=N/V is the number den-
Notable theoretical approaches to describing stationargity of colloidal particles, an& is a constant related to the

shear flow effects on microstructure are due to Onukisquare-gradient Cahn-Hilliard coefficiefvhich measures

Yamazaki, and KawasaKi7,13], Schwarzl and Hesfl4], the contribution of gradients in the density to the local Helm-

Ronis [15], and Wagner and Russgl6]. The theoretical holtz free energy The correlation length of the unsheared

approach discussed in the following subsections is takegsystem is related tdIl/dp and as

from Refs.[17,18, which specifically deal with colloidal

systems near the critical point. S
€=V didy @

A. Shear-induced distortions under stationary shear flow

The dimensionless number that measures the amount dfotice that since8dIl/dp—0 on approach of the critical
distortion of microstructure extending over distancés the  point, D®f(k=0)<D,, that is, diffusive motion near the
Peclet numberyr?/2D, wherey is the shear rate arldis the  critical point becomes very slow. This is a phenomenon that
diffusion coefficient relevant for relaxation of microstruc- is usually referred to as “critical slowing down.” Further-
tures of extent. When the Pelet number is less than 1, the more,£>R,, so that\>Pé, that is, long-range critical cor-
effects of shear on microstructures of extenare small, relations can be significantly distorted for shear rates where
while for Peclet numbers larger than 1 there is a significantshort-range correlations are hardly affected. When1,
distortion. As it will turn out, there are two length scales of long-range correlations are only slightly affected. Long-
interest in the vicinity of the critical point: the rand®, of  range correlations are severely affected only whenl.
the pair-interaction potential, which is of the order of the sizeSimilarly, short-range correlations are only affected when
of the core of the colloidal particles, and the extent of criti-Pé>1. One can therefore generally distinguish between
cal, long-range correlations, which is measured by the correthree shear-rate regimes
lation lengthé. In addition there are two time scales to be
distinguished: the relaxation time of microstructure of extent )

Ry, which is characterized by the single-particle diffusion A<1, Pé<1 (the weak-shear regime
coefficientDg, and the relaxation time of the microstructure A>1, Pé<1 (the strong-shear regime
of extenté, which is characterized by an effective diffusion .
coefficientD®(k=0). Two Pelet numbers should therefore A>1, PE«1 (the very-strong-shear regime (5)

be distinguished: the bare &et number P& which mea- . - . . .
sures the amount of distortion of the microstructure overThe theoretical predictions in Refsi7,14 are valid only in

distances at most equal to the range of the pair- the weak- and strong-shear regimes since there the distortion
interaction potential, and the dressealeenumbenn, which of sBort-Fr)%nge corrtlela'ilogs',: mttar?suredh by thf bargIePe th
relates to the amount of distortion over distances comparabfe ™ 2" are neg ecsgt - FOr tose shear-rale regimes the
to the correlation lengtl of the unsheared system. These static_structure factolS™ under stationary shear flow is
two Peclet numbers are equal to found to be given by

YRS [S*4K)—1]
~ 2D, AK,

P& (1) S™K)=SY(K)+

oo F(K|X
X dX(K?—K3+X?)(K5—X?)exp — (K[X) ,
,'}/52 Ky )\Kl

N oDefk=0)" @ 6)
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whereK=k¢ is a dimensionless wave vector with compo-
nentsK; . The upper bound of the integral #s» (—«) when
K,;>0 (K;<0). The functionF(K|X) is a polynomial of
the components of the dimensionless wave vectorXnd
F(K[X)=(X~Kp)(K?=K3)(1+K2-K3)
+3(X3—K3)(1+2K2=2K3)+ E(X5=K3).
(7

The equilibrium structure factd®®® is the Ornstein-Zernike
structure factor

1 1 & 1
BS £ 24K B3 1+KZ

SHK)= (8

FIG. 1. Stationary structure fact&"{K) according to Eqs(6)
This is the structure factor of the unsheared, quiescent sysmd (7) in the flow-gradient plandupper figures and the flow-
tem with correlation lengtl§. Besides being valid only in the vorticity plane (lower figures, for various values of the dressed
weak- and strong-shear regimes, the re@land(7) for the  Peclet number. The leftmost figure is the equilibrium, unsheared
structure factor under stationary shear flow is also valid onlystructure factor in Eq(8), the Ornstein-Zernike structure factor.
in the mean-field region. In its derivation in Ref$7,18 the
equation of motion for the total correlation functitn(the

Fourier transform of which is essentially the structure factor ture factor under stationary shear flow is only validwhen

is linearized with respect th. This is allowed for the small, Pd<1 that i cin th t h ‘ ii:
critical wave vectors of interest near the critical point, since, » that 1s, not in the very-strong-shear rate regime,

h(r)—0 for r—o. The asymptotic solution of the equation in the mean-field region whgre Iinea.rizafcion of equations of
of motion for large distances can thus be obtained by linearMotion for the total-correlation function is allowed, not be-
ization with respect td. What goes wrong on linearization Yond mean field, where nonlinear equations of motion must
very close to the critical point is the following. On lineariza- P& considered; andii) when hydrodynamic interactions are
tion, terms of ordeih? are neglected with respect to linear nNegligible. )

terms in h. An important linear term is multiplied by  The dressed Réet number\ is the same as the dimen-
BdIl/dp. The actual assumption is thus tha@dIl/dp)h sionless constanyr. mentioned in the Introduction in con-
<h? for typical values thah attains due to the development nection with earlier work. This can be seen as follows. The
of long-range correlations, that is, foBR,,. Very close to  typical relaxation timer; of density waves with wavelength
the critical point, howeveradll/dp becomes very small and 2¢ is equal to .= &2ID®M(k=27/2¢) = £2/2CDf(k=0),

the quadratic terms ih (and possibly even higher-order with C=3(1+ #2) a numerical constant. Here we used Eq.
termg are just as important as the linear term mentioned(4) for the correlation length. Henceyr.= y£2/2Df(k
Therefore, nonlinear equations of motion should be consid=0), which is precisely, apart from the numerical constant
ered beyond the mean-field region. The resultin E@sand . The shear-rate dependence of the wave vektor for

(7) obtained after linearization becomes less accurate on veRyhich shear effects on the structure factor becomes signifi-
close approach of the critical point. A third approximation cant as mentioned in the Introduction, can be obtained as
that has been made to arrive at the result in E§sand(7)  ¢5)10s. The Pelet number Pethat measures distortions of
for the structure factor is that hydrodynamic interactions be'correlations extending over distancesr/&, is equal to

tween the colloidal particles are neglected. 2 off " .
The expression&) and(7) for the structure factor under (zdﬂll(é)—Z/gD (k%)' very cIos§ o t}(hegrgcaé)g:fmgt, fﬂ?re
stationary shear flow are easily evaluated numerically ané p~0, we have, according to Eq3), D™(kc)~k;

some results are shown in Fig. 1. As can be seen from thidnd hence Re- vk *. The distortion of the structure factor
figure, long-range correlations are diminished in all direc-for wave vectors equal tk, becomes significant when Pe
tions by the shear flow, except in directions where the com=1 and hencé,~ y". Further away from the critical point
ponent of the wave vector along the flow direction vanishesye have D®f(k,)~DoBdIl/dp=const, so that it follows
K,=0. That the structure factor is unaffected by shear flowsimilarly thatk,~ ¥¥2. The exponent 1/4 found in this way

in these directions can immediately be seen from &). should not be taken too seriously since the theory described
since there the shear rate-\ is always multiplied byK, above applies only to the mean-field region. The mean-field

To summarize, the result in Eq®) and(7) for the struc-

and of courses®@= S*9 when\=0. Hence exponent of 1/2 found here is the rigorous mean-field expo-
nent that expresses the shear-rate dependenkg (@xcept
S(K)=SYK) for K;=0. (99  that hydrodynamic interactions between the colloidal par-

ticles are neglectedThe exponent beyond the mean field of
Identifying the integrand in Eq(6) as aé distribution for ~ 1/3 found for molecular systems by Onuki, Yamazaki, and
vanishing shear rates makes this statement mathematicalkawasaki[7] is in between our mean-field exponent 1/2 and
rigorous(see Refs[17,1§)). our estimate of the exponent beyond mean field 1/4.
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prefactor. The argument of the exponent in Eif) is inde-
pendent of the shear rate since .

What is the origin of the scattering ring? As explained
above, there is a driving forc®— S°% for relaxation that in-
creases with decreasing wave vectexcept in directions
whereK;=0). This driving force gives rise to slower relax-
ation at larger wave vectors. The rate of relaxation is diffu-
sion limited, as signified by the fact@®f(k)k? in Eq. (10).
FIG. 2. Transient structure factoBK,t) in the flow-vorticity ~ This diffusion rate gives rise to faster relaxation at larger

plane after cessation of shear flow, according to @d). wave vectors. The interplay between these two relaxation
rate determining factors gives rise to an optimum relaxation
B. Relaxation after cessation of shear flow rate at some intermediate wave vector, as a result of which

After cessation of shear flow, the structure factor will (€ scattering ring appears. _ ,
change in time from its form under stationary shear flow to A Similar scattering ring is seen during spinodal decom-
the Omstein-Zernike equilibrium form. Under the same conPOSition, but its origin is completely different. In the case of
ditions for the validity of Eqs(6) and(7) for the stationary ~SPinodal decomposition one has a negative valudlbtlp,
sheared structure factor, the transient structure factordVing rise to an optimum value of the diffusion rate

S(K,t) obey the equation of motiofL8] Df(k)k? itself, as can be seen from E@) for the effective
’ diffusion coefficient. In the present case the diffusion rate is
aS(k,t) a monotonically increasing function of the wave vector since

= —2D°f(k)kZ[S(k,t) — S*YK) ], (100 dIl/dp>0. It is the combination of the wave-vector depen-
dence of the driving force and the diffusion rate that gives
rise to an optimum relaxation rate. Notice also that in the
case of spinodal decomposition the equilibrium state is a
demixed state of two coexisting phases, while in the present
case the equilibrium state is a homogeneous, one-phase state.

ot

where the effective diffusion coefficient is given in H).
There is thus a “driving force” equal to the differenc®

— S® between the actual structure factor and its final equi
librium form and there is a rate limiting diffusion coefficient.
The solution of Eq(10) is easily found to be equal to

C. Shear-induced shift of the critical point

S(K,1)=Sk) +[S*(k) ~ S*(Kk)] So far we have not addressed the shear-induced displace-
X exp| — 2D*f(k)k2t} ment of the critical point, a shift which may be of importance
for data interpretation. It can be rigorously shown that the
_ sta e shear-induced shift of the critical point is related to the dis-
=SHK)+[S(K) ~S$4K)] tortion of short-range correlatiorji49]. The displacement of
X exp{— K2(1+K?) YA}, (11 the critical point is thus a function of the barédRe number
P&, not of the dressed Bkt number\. In the weak- and
where K is, as before, the dimensionless wave vedtor Strong-shear regime, as defined in E8), the displacement
= k¢, with & the correlation length of the unsheared, equilib-©f the critical point is therefore negligible. There is a signifi-
rium system. Here we used thatD®f(k)k?t=Kk2(1  cant displacement only in the very-strong-shear regime,
+K2)yt/x. This result predicts that at any time during re- Where P& is not very small. However, on very close ap-
laxation, the structure factor takes its equilibrium form in Proach of the critical point, a very small displacement may
directions perpendicular to the flow direction, that is, foralready be of importance. When the small distance to the

K,=0, just like the structure factor under stationary sheafc'itical pointis of the same order as its small displacement,
flow that displacement does have a significant effect. The theoret-

ical results discussed in Secs. Il A and Il B are valid only in
the mean-field region, relatively far away from the critical
S(K,t)=S*(K) for K;=0. (12 point, and only in the weak- and strong-shear regime. For the
experimental verification of these theoretical results, the
Numerical results for transient structure factors during relaxshear-induced shift of the critical point is therefore irrel-
ation in the flow-vorticity plane are given in Fig. 2. As can evant. The shift may be relevant to some of the experiments
be seen from this figure, a scattering ring develops that erthat we will present here, which are performed extremely
closes the Ornstein-Zernike equilibrium structure factor atclose to the critical point. To quantitatively interpret such
K,=0, and the ring moves inward as time proceeds. Afterexperiments beyond the mean-field region, one should not
relaxation the structure factor attains its isotropic equilibriumonly consider nonlinear equations of motion for the total
Ornstein-Zernike forn8*{K) for all wave vectors. correlation function, but also include distortions of short-
Notice that the resultl1) for the transient structure factor range correlations, even for small values of the barele®e
predicts single exponential relaxation in time, which wasnumber.
also observed by Beysens, Gbadamassi, and Moncef-Bouanz Notice that in the mean-field region there is a significant
[2] for binary fluids. Furthermore, relaxation times are onlydistortion of the structure factor in directions perpendicular
shear dependent through the shear rate dependence of tieethe flow direction only when there is also a significant
stationary sheared structure fact8i® in the exponential shift of the critical point. Both the shift of the critical point
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L entire Couette cell is placed in a toluene bath that serves both
il for thermostating at25.0+0.1) °C and for optical matching.
Within the hollow rotation inner cylinder, filled with toluene,
a stationary pinhole is placed to prevent detection of scat-

k : . i
/\ (l s tered light from the first gap. The second gap is arranged to
Plasert \/ l) g gap gap g

= R N be in the center of the cylindrical toluene bath. The scattered
intensity is projected onto a translucent screen, from which
the intensity is recorded by a computer-interfaced charge
R~ coupled device cameréEDC-1000, Electrim Corporation,
192x165 pixels, with eight-bit resolution The beam is al-
FIG. 3. Schematic of the experimental setup. See the main tepwed to pass through a circular hole in the screen to prevent
for further details. detection of radiation from the incident beam as well as light
that is scattered by dust particles, which are inevitably

and distortions along directions whekg=0 are significant Present to some extent. The setup allows measurements in
in the mean-field region only when the bareRenumber is  the scattering angle range of 1.2°-10°, corresponding to a
not very small, that is, only in the very-strong-shear regimewave-vector range of (810°)—(3x10°) m™% In this
wave-vector range the form factor of the colloidal particles is
IIl. EXPERIMENT essentially equal to 1, so that the measured scattered inten-
sity is directly proportional to the structure factor. Further-
more, we found the scattering of the polymers completely
A relatively easy way to prepare a model colloidal systemnegligible compared to that of the colloidal silica particles.
exhibiting a gas-liquid critical point is by mixing colloidal
particles and polymer. In case the solvent is chosen such that C. Scattering under stationary shear flow
the colloidal particles behave as hard sphérreshe absence In this subsection we consider two concentrations: a con-

of polyme) and is ag solvent for the polymer, Wh”e the centration where the correlation length is equal to 850
polymer does not adsorb onto the colioidal particles, aPvm, referred to as syster, and a concentration where the
proximate theories predict a gas-liquid phase transition Whegor’relation lenath isye ua{l t0 2.5 um. referred to as
the size ratio of the colloidal particles to that of the polymer 9 q > T

: . systemB. Since the range of the pair-interaction potential is
IS 'es$ than abo_ut 0{20]. The mechams_m that Ieads_ to the about 160 nm, being the sum of the diameter of a silica
effective attraction between the monodisperse colloidal par:

ticles that is necessary for a gas-liquid phase transition igarticle and that of a polymer, systefis not extremely
y 9 9 P Close to the critical poinfprobably in the mean-field regi@n

easily understood: When two colloidal particles approach ;
X ; ; cc%ntrary to systenB. These correlation lengths are measured

each other, there exists a region between these particles t ay light scattering from the unsheared systems, using the

is depleted from polymers, giving rise to an uncompensate . ; ) -

osmotic pressure that drives the colloidal particles together, rnstein-ZermikegOZ) structure factor in Eq(8): A plot of

These attractive pair interactions between the colloidal part-‘ne reciprocal intensity against the square of the wave vector

) o " (referred to as OZ plo}syields the square of the reciprocal
ticles are therefore commonly referred to as “depletion- : ! g )
. o correlation length as the ratio of its intercept and slope. Fig-
induced attractions’[21,22. ) S
The colloidal particles we used as spherical, amorphou§ <> 4a) and 4b) show the scattered intensities of the un-
. : P ; as spt . PROUZheared system& and B, respectively. The OZ plots are
silica particles, synthesized according to k&g Fink, and

Bohn [23] and coated with stearyl alcohol according to Vanshown in the insets, while the main figures show the struc-

. - ture factor as a function of the wave vector, with the solid
Helden, Jansen, and Viip4]. The radius of the coated silica line corresponding to the linear fit of the OZ plot. The data

particles in cyclohexane, as determined with dynamic light ints are obtained as radially averaged intensities, after cor-

scattering, is 57 nm. In cyclohexane these particles behavi! X . o
like hardgspheres. The po)I/ymer that is addeg is polydimeth[ecnon for refraction of scattered light by the glass cylindri-

Isiloxane with a molecular weiaht of 2@&nd a radius of cal wall of the thermostating bath. As can be seen from Fig.
yistioxang 9 - . 4, the structure factor of both systemAsand B is well de-
gyration in cyclohexane of 23 nm. The critical composition _’ . . .

: . . . scribed by the Ornstein-Zernike for(8).
of this system is 101 g of silica particlescat g of polymer. .
. o o - Figures %a) and b) show the structure factor as a func-
The distance to the critical point is changed by adding or. _ .
: . . 2 “tion of kg at k;=0 for systemsA and B, respectively, for
evaporating solvent. The critical polymer concentration is

. . - . several shear rates. As can be seen, there is almost no ob-
approximately 4 g/l, with a colloid volume fraction of about :
2504, servable decrease of the structure factor for the mean-field

systemA up to the highest shear rate£9.5 s'1), while for
the system beyond the mean field, systBmeven for the
lowest shear ratéy=0.1 s'1) there is already a significant
A schematic of the experimental setup is given in Fig. 3.distortion. The mean-field resu(6) and (7) predicts that
The light source is a 5-mW He-Ne lasédughes, model there should be no distortion in the directions whkre-0,
3225H-PC, wavelength 632.8 nni lense and a pinhole are  whenever the bare Blet number Pe<1. For system, the
used to control the primary beam. The shear cell is an opticdlighest shear rate corresponds to a barel@®ewumber of
Couette geometry, with an inner optical glass cylinder with0.03 and the experimental observations in Fi@) Sustain
diameter of 43.05 mm and a gap width of 1.90 mm. Thethis mean-field prediction. For systdBhowever, the small-

A. Colloidal system

B. Experimental setup
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FIG. 4. Radially averaged intensities plotted versus the wave vectga)fsystemA and(b) systemB. The insets are OZ plots for the
determination of the correlation length. The solid lines in the main figures are the best fits to the OZ plots.

est shear rate corresponds to a bared®@umber as small as pendicular to the flowiwherek,=0) in the strong-shear re-
0.0003, but still a significant distortion is found, even thoughgime [as defined in Eq(5)] very close to the critical point.
k;=0. There is thus a significantly different behavior very There is no significant distortion in these directions for sys-
close to the critical point as compared to the mean-field betems in the mean-field region, further away from the critical
havior of the distorted structure factor. point, in accordance with the theoretical predicti@ and

In Figs. Ga) and @b) the structure factor is plotted as a (7) pertaining to the weak- and strong-shear regime.
function ofk,; atk;=0 for systemsA andB, respectively, for

the same shear rate range as in Figa) &nd 5b). A strong
reduction of the structure factor of systéins found beyond
v=0.2 st showing that the experiments relate to the strong- After cessation of shear flow, the structure factor will
shear regime, whene>1 [see the definitiori5)]. The distor-  evolve from its form under stationary shear flow to the equi-
tion of systenB is even more pronounced than for systdm librium Ornstein-Zernike form. We performed light scatter-
The same features are found for the structure factor as img experiments on a system very close to the critical point,
function ofk; at a finite value 7.2 10° m ! of k3, as shown beyond the mean-field region. The OZ plot for the unsheared
in Figs. 1a) and {b). The data given in Figs.(8) and 7a) system is given in the insert in Fig(a&, while the main
are too noisy to allow for a quantitative test of the predictionfigure gives the structure factor as a function of the wave
(6) and (7) for the stationary sheared structure factor. vector, where the solid line is the Ornstein-Zernike structure
To summarize, we found that there is a pronounced sheafactor (8) that follows from a fit of the OZ plotsee the
induced distortion of the structure factor in directions per-discussion at the beginning of Sec. I1).CThe correlation

D. Relaxation of the structure factor
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FIG. 5. Structure factor &; =0 as a function ok, for (a) systemA and(b) systemB for various shear rates as indicated in the figures.

The solid lines are the Ornstein-Zernike structure factors as determined from the OZ plots in(&igsmd44b).
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FIG. 6. Structure factor dt;=0 as a function ok, for (a) systemA and(b) systemB for various shear rates as indicated in the figures.
The solid lines are the Ornstein-Zernike structure factors as determined from the OZ plots in(&igsad44b).

length that is found from the OZ plot is 2.5 um. The  mental results beyond the mean field in Figb)8are com-
transient intensities after cessation of the shear flow with @ared with the mean-field theoretical prediction in E@s,
shear rate equal to 100 5are shown in Fig. 9. As can be (7), and (11). The dashed lines in Fig.(® represent the
seen, a scattering ring develops. We found that, except for theoretical predictions for a dressedcke number equal to
narrow region aroundt, =0, the scattering patterns are cir- A=29 000. As can be seen, there is a semiquantitative agree-
cular symmetric to within experimental errpsuch a sym- ment between the experiments and theory. The peak posi-
metry is also predicted by Eq&) and(7) to within 1% in  tions of the scattering maximima are well reproduced by
case of largeN’'s]. Radial averages, where the mentionedtheory. However, theory predicts a too fast growth for early
narrow region aroun#d; =0 is omitted, are given in Fig.(B)  times and a too slow growth for later times.

for several times after cessation of the flow. This figure re- The effective diffusion coefficienD®"(k) can be ob-
veals more clearly the formation of a peak in the structuraained, according to Eq11), by a single exponential fit of
factor, like in the theoretical mean-field results in Fig. 2. Asthe time-dependent intensity at a fixed wave vector. This is
discussed in Sec. Ill C the structure factor is severely disdone for three different wave vectors in Fig. 10. Single ex-
torted in directions wher&;=0 on very close approach of ponential fits are seen to overestimate the growth rate at early
the critical point. What is missing in the experimental inten-times, just as the fits in Fig.(B). From these single expo-
sities in Fig. 9 as compared to the theoretical results in Fig. Ziential fits we can estimate the effective diffusion coeffi-
is therefore the bright streak in the direction whére=0.  cient, which is plotted in Fig. 11 as a function of the squared
Since there is as yet no theory available for the structurevave vector, which plot should be a straight line according
factor distortion beyond the mean-field region, the experito Eq.(3). This is indeed found to be the case, except for the
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FIG. 7. Structure factor dt;=7.2x10° m~! as a function ok, for (a) systemA and(b) systemB for various shear rates as indicated
in the figures.
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FIG. 9. Time series of scattering patterns during relaxation of
507 the microstructure after cessation of a shear flow with shear rate
100 s'L. The time between the subsequent images is about 4.5 s.
é 40
5 and 1.7 51. We found the value®*f(k=0)=(2.5+0.5)
§ s0- X101 and (3.5-0.8)x 10 **m?s™?, respectively. Since
g D.(k=0) is predicted to be independent of the shear rate,
‘é the three values we found should be the same. To within
g 20 experimental errors this is indeed the case.
= To summarize, we found experimentally transient struc-
104 ture factors during relaxation after cessation of shear flow
that exhibit a peak, which means that there is an optimum
o relaxation rate at an intermediate wave vector. This is in
0 accordance with mean-field theoretical predictions, where

the scattering ring is shown to be the result of the interplay
between a decreasing driving force and increasing diffusion
rate with increasing wave vector. The agreement between

FIG. 8. (a) Radially averaged intensities as a function of the mean-field theory and experiments very close to the critical
wave vector. The inset shows the OZ plot and the solid line in the

main figure is the Ornstein-Zernike structure factor as determined

from the OZ plot.(b) Radially averaged transient intensities after 70 .
cessation of the shear flow with shear rte100 s* as a function
of the wave vector at various times as indicated in the figure. The 601 7

solid line is the Ornstein-Zernike structure factor frga) and the

dashed lines are theoretical results from E(®. and (7) with ?2\ 50'_ ]
A=29 000. 5 4ol ]
)
larger wave vectors where experimental uncertainties are & 30_' ]
large as the result of the small differencgs S*[see Fig. 2 ]
8(b)]. Extrapolation to zero wave vector yield@*"(k=0) £ 204 i
—14 2 —1 inh ; ; L
=(2.5£0.5)X10 **m°s*, which is quite a bit smaller = 1

than the single-particle diffusion coefficienDy=4.3 10
x 102 m? 571 for the colloidal silica particles in cyclohex- ]

ane without polymer, signifying the pronounced critical 0__ i
slowing down. The dressed et number\, as defined in Y N —
Eq. (2), is thus found to be in the range 7000—25 000, which 0 20 40 60 80 100 120
is of the same order as we used to describe the relaxation time (s)

data in Fig. 8b). Of course these results must be considered

as semiquantitative since we applied a mean-field result to FIG. 10. Single exponential fits to Eqll) of the time-
interpret relaxation data for a system very close to the criticalilependent intensity for three wave vectots=0.60x 10° m™?,
point. Values forD®(k=0) were obtained in the same way solid line;k=0.75x 1¢° m™?, dashed linek=1.00x 10° m™%, dot-
from relaxation data where the initial shear rates were 2.@ed line.
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6.0 " T T T y T - equilibrium structure factor in directions perpendicular to the
flow direction at all times.
(v) Relaxation after cessation of shear flow is predicted to

509 l be single exponential in time.

S . ' The above results are valid in the mean-field region,
N"’ 4.0 " where equations of motion for the total correlation function
£ " can be linearized. In addition, effects of hydrodynamic inter-
3 actions between the colloidal particles are assumed not to be
2 304 . essential.
%\, As far as the shear-induced displacement of the critical
() point is concerned the predictions are the following.

2.0 T (i) The shear-induced displacement of the critical point
(and in fact of the entire spinodak related to distortion of

short-range correlations and is therefore a function of the

bare Pelet number. In the weak- and strong-shear regimes

the displacement of the critical point is therefore negligible

K2 (m-z) provided experiments are performed in the mean-field re-

gion. Very close to the critical point, a very small displace-

FIG. 11. Effective diffusion coefficient as a function of the ment of the critical point may be of importance when the
squared wave vector. small distance to the unsheared critical point is of the same
order as its shear-induced displacement.

(ii) Distortions of the microstructure in directions perpen-
dicular to the flow are always accompanied by a significant
displacement of the critical point provided experiments are
performed in the mean-field region. In the mean-field region
both effects are significant only in the very-strong-shear re-
gime.

Experimentally the following is found.

(i) In the vicinity of the critical point there are two Blet (i) In the mean-field region the shear-induced microstruc-
ture in directions perpendicular to the flow direction are not

numbers to be distinguished: the dressédi@enumber ; .
and the bare Réet number P&[see Eqs(1) and (2)]. The affected by shear flow in the weak- and strong-shear regimes,
q : in accordance with theory.

dressed Rget number measures the amount of shear- (i) Very close to the critical point, the microstructure is

mduged dlstort_lon of long-range critical m|crostruc_ture, EX° affected in directions perpendicular to the flow even in the
tending over distances of the order of the correlation lengt@trong-shear regime, contrary to mean-field results

¢ while the bare Relet number measures the distortion of ™ jiiy The formation of a peak in scattering patterns during
the short-range microstructure, extending over distances of @|axation of the microstructure after cessation of shear flow,
most the rang®y of the pair-interaction potential. which is predicted by mean-field theory, is indeed found ex-
(it) Three shear rate regimes are to be distinguished: thgerimentally. The ringlike transient scattering patterns are
weak-, strong-, and very-strong-shear rate regifise® the |ess pronounced further away from the critical point.
definition (5)]. In the weak-shear regime the long-range mi-  (iv) The agreement between mean-field predictions and
crostructure is only slightly affected by the shear floov  experimental results very close to the critical point as far as
<1). In the strong-shear regime the long-range microstructhe temporal evolution of the structure factor is concerned is
ture is strongly affected, while short-range correlations aresemiquantitative. Contrary to mean-field theory, relaxation
still essentially unaffected\>1 and P&<1). In the very- very close to the critical point deviates from single exponen-
strong-shear regime also short-range correlations are affectdidl temporal behavior. Mean-field theory overestimates re-
(P«1). laxation rates at earlier times and underestimates relaxation
(iii) The structure factor under stationary shear flow istimes at later times.
highly anisotropic in the strong- and very-strong-shear re- Possible reasons for the different behavior of shear-
gimes. There is no distortion perpendicular to the flow direcinduced distortions away from and very close to the critical
tion in the weak- and strong-shear regime. The distortion irpoint are, in order of what we feel is probable, as follows.
these directions becomes significant only in the very-strong- (i) Very close to the critical point nonlinear equations of
shear regime. motion for the total correlation function should be analyzed,
(iv) During relaxation of the microstructure after cessa-contrary to the mean-field region, where linearization is al-
tion of the shear flow, there is an optimum growth rate atowed. Such nonlinear equations of motion will probably
some intermediate wave vector, resulting in the developmergive rise to significant distortions perpendicular to the flow
of a peak in the scattering pattern. This peak is the result ah the strong-shear regime and to nonsingle exponential tem-
the interplay between a driving force and rate limiting diffu- poral relaxation after cessation of shear flow.
sion, the former of which decreases and the latter increases (ii) It might be that hydrodynamic interactions between
relaxation rates on increasing the wave vector. In the weakthe colloidal particles are more important very close to the
and strong-shear regimes the structure factor is equal to thaitical point.

1.0 T T T T T T d
0 0.5 1 1.5 2x10"

point is semiquantitative. Further away from the critical
point, ring formation is found experimentally to be less pro-
nounced.

IV. SUMMARY AND CONCLUSIONS

Let us first summarize what the theory predicts.
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(iii) The displacement of the critical point in the strong- above-mentioned points. The approach taken in R&é%18
shear regime may be significant very close to the criticain principle allows one to systematically incorporate these
point in case the distance to the unsheared critical point is aéxtensions.
the same order as the very small shear-induced displacement. The things that remain to be done experimentally are a

The theoretical challenge is to analyze the nonlinear equaguantitative test of the predictiq) and(7) for the structure
tions of motion of the total correlation function, to include factor under stationary shear in the mean-field region and
long-range hydrodynamic interactions, and to include shortfurther exploration of shear-induced distortions very close to

range distortions. These extensions of the mean-field theoryhe critical point. More accurate measurements than those

as described in Refd17,18, would elucidate the three presented in the present paper are required for this purpose.
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